Effect of La₂O₃/ -Al₂O₃ Catalyst on the Activation of CH₄ and CO₂ to C₂ Hydrocarbons under Non-equilibrium Plasma

Xiu Ling ZHANG^{1,2}, Wei Min GONG¹*, Bin DAI¹, Chang Hou LIU¹

¹Plasma and Chemistry Laboratory, Dalian University of Technology, Dalian 116012 ²Center of Analysis, Dalian Institute of Light Industry, Dalian 116031

Abstract: In the reaction of methane and carbon dioxide to C_2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C_2 hydrocarbons was increased when using La_2O_3 / $-Al_2O_3$ as catalyst. So the yield of C_2 hydrocarbons was higher than using plasma alone. The synergism of La_2O_3 / $-Al_2O_3$ and plasma gave methane conversion of 24.9% and C_2 yield of 18.1%. The distribution of C_2 hydrocarbons changed when Pd- La_2O_3 / $-Al_2O_3$ was used as catalyst, the major C_2 product was ethylene.

Keywords: Non-equilibrium plasma, catalyst, methane, carbon dioxide.

The oxidative coupling of methane (OCM) to C_2 hydrocarbons using carbon dioxide as oxidant is an attractive process from environmental point of view. Only a few research papers reported for it¹⁻³. In general, the yield of C_2 hydrocarbons was about 6%. This indicated that the method of catalytic activation was unfavorable to the reaction. It is necessary for us to find a new method in order to activate reaction and improve C_2 hydrocarbon yield. Non-equilibrium plasma is a cold plasma in a gas at atmospheric pressure, in which the electron temperature is very high, yet the ionic or molecular temperature is rather low. The advantage of this plasma technology is that less energy was consumed in heating gas and more conversion of methane to C_2 hydrocarbons was achieved. There are hardly papers to report the results of synergism of catalysts and plasma which using in conversion of methane-carbon dioxide to C_2 hydrocarbon reaction.

In this paper, the La₂O₃/ $-Al_2O_3$ catalyst was prepared by impregnation of $-Al_2O_3$ (20 ~ 40 mesh) with lanthanum acetate in water. The catalysts of Pd/ $-Al_2O_3$ and Pd-La₂O₃/ $-Al_2O_3$ were prepared by impregnating $-Al_2O_3$ and La₂O₃/ $-Al_2O_3$ with PdCl aqueous solution. The evaluation of catalysts was carried out using a plasma reactor with gas chromatograph equipped with flame ionization and thermal conductivity detectors. CH₄ and CO₂ space velocity was 7500 h⁻¹. The power input of plasma was 30 W.

Results and Discussion

*l Effect of La*₂ O_3 / *-Al*₂ O_3 catalysts under plasma

^{*} E-mail: weimingong@163.net

Xiu Ling ZHANG et al.

From the results of **Table 1**, it is found that the roles of various catalysts were obvious, but different. When pure $-Al_2O_3$ alone was used as the catalyst under plasma, it gave a methane conversion of 43.4% and C₂ hydrocarbons selectivity of 30.6%, the main product was CO. In contrast, all La_2O_3 / $-Al_2O_3$ catalysts gave a C₂ hydrocarbon selectivity of more than 60%, and maintain the methane conversion level about 24%. It seems that the molecular of La_2O_3 and $-Al_2O_3$ interacted each other at the interfacial area and created new active site which offer the active and selective performance of the conversion of methane and carbon dioxide into C₂ hydrocarbons over La_2O_3 / $-Al_2O_3$ catalysts. It should be pointed out that, the La_2O_3 / $-Al_2O_3$ catalysts had no change the distribution of C₂ products, C₂H₂ is the major C₂ product.

Table 1 Effect of La2O3/ -Al2O3 catalysts under plasma

Catalysts	X_{CO_2}	$\mathbf{X}_{\mathrm{CH}_4}$	\mathbf{S}_{C_2}	Yc_2	Yc ₂ Yco Distribution of $C_2 \sim C_3$ /			/mol%	
	(%)	(%)	(%)	(%)	(%)	C_2H_6	C_2H_4	C_2H_2	C_3H_8
$-Al_2O_3$	16.7	43.4	30.6	13.4	37.7	10.8	15.0	74.2	
5% La ₂ O ₃ / -Al ₂ O ₃	22.1	24.5	70.6	17.3	28.4	11.9	11.7	76.4	
7% La ₂ O ₃ / -Al ₂ O ₃	21.7	24.9	72.8	18.1	30.0	12.5	12.7	74.8	
10% $La_2O_3/ -Al_2O_3$	22.3	24.3	68.2	16.6	23.7	13.6	13.7	72.7	
12% $La_2O_3/ -Al_2O_3$	24.9	24.1	64.4	15.2	25.2	13.6	14.2	72.3	

2 The role of Pd - La_2O_3 / -Al₂O₃ catalysts under plasma

The La₂O₃/ -Al₂O₃ catalysts gave high C₂ hydrocarbons selectivity but the major C₂ product was C₂H₂. In contrast, the Pd/ -Al₂O₃ catalyst has high C₂H₄ content but C₂ hydrocarbon selectivity was about 40%. It is well known that C₂H₄ has more economic value than C₂H₂, if we combine La₂O₃/ -Al₂O₃ with Pd/ -Al₂O₃ catalyst to prepare the new catalyst Pd-La₂O₃/ -Al₂O₃, it would not only have high C₂ hydrocarbon selectivity but also have high C₂H₄ content in the C₂ products. The result of experiment in **Table 2** just proved this. The Pd- La₂O₃/ -Al₂O₃ catalyst gave a C₂ selectivity of 70% and C₂H₄ content about 65%. This indicated that the Pd- La₂O₃/ -Al₂O₃ catalyst is an excellent catalyst for C₂H₂ hydrogenation under non-equilibrium plasma.

 $\label{eq:Table 2} \mbox{ Effect of Pd/ -Al}_2O_3 \mbox{ and Pd-La}_2O_3/ \mbox{ -Al}_2O_3/\mbox{ catalysts under plasma}$

Catalysts	$\mathbf{X}_{\mathrm{CO}_2}$	$\mathbf{X}_{\mathrm{CH}_4}$	\mathbf{S}_{C_2}	Yc_2	Yco	Distribution of C ₂ ~C ₃ /mol%			
	(%)	(%)	(%)	(%)	(%)	C_2H_6	C_2H_4	C_2H_2	C_3H_8
0.01% Pd/ -A l ₂ O ₃	16.4	38.5	34.5	13.3	34.5	24.0	72.3		3.7
0.05% Pd/ -Al ₂ O ₃	27.0	34.7	39.5	13.7	33.3	26.0	64.2		9.8
0.1% Pd/ -Al ₂ O ₃	28.0	34.6	40.5	14.0	34.2	34.6	43.4		15.0
$0.01\% \ Pd/5\% \ La_2O_3/ \ -Al_2O_3$	22.0	23.8	70.4	16.7	23.4	25.4	65.4		9.2

Reference

1. K. Asami, T. Fujita, K. Kusakabe, Y. Nishiyama, Y.Ohtsuka, Appl. Catal., 1995, 126, 245.

Received 14 June, 2001